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We investigate a generalized stochastic model with the property known as mean reversion, that is, the
tendency to relax towards a historical reference level. Besides this property, the dynamics is driven by multi-
plicative and additive Wiener processes. While the former is modulated by the internal behavior of the system,
the latter is purely exogenous. We focus on the stochastic dynamics of volatilities, but our model may also be
suitable for other financial random variables exhibiting the mean reversion property. The generalized model
contains, as particular cases, many early approaches in the literature of volatilities or, more generally, of
mean-reverting financial processes. We analyze the long-time probability density function associated to the
model defined through an Itô-Langevin equation. We obtain a rich spectrum of shapes for the probability
function according to the model parameters. We show that additive-multiplicative processes provide realistic
models to describe empirical distributions, for the whole range of data.
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I. INTRODUCTION

Accurate statistical description of the stochastic dynamics
of stock prices is fundamental to investment, option pricing,
and risk management. In particular, a relevant quantity is the
volatility of price time series �1� that quantifies the propen-
sity of the market to fluctuate. Since volatility represents a
measure of the risk associated to the fluctuating dynamics of
prices, it is crucial to develop suitable models to predict its
complex intermittent behavior. There is empirical evidence
that it fluctuates following a stochastic dynamics subjacent to
that of prices, whose dynamics, in turn, depends on the time
evolving volatility. Many approaches are based on that as-
sumption �2�, although others propose the existence of a re-
ciprocal feedback between both processes �3�.

Our approach builds on the development of a simple
Langevin equation to characterize the stochastic process of
volatility. The equation provides a unifying description that
generalizes widely discussed models in the literature. We
analyze the shape of the long-time probability density func-
tion �PDF� associated to the stochastic differential equation
that characterizes each particular case of the generalized
model. Most previous results focus on the tails of the PDFs.
In fact, for stochastic variables, such as volatilities presenting
fat-tailed PDFs �4,5�, it is especially important to reproduce
extreme events in a realistic model. Now we go a step further
and aim to predict the PDFs in the whole range of events.

One of the main features observed in the dynamics of
some financial variables, such as volatilities, stock volumes,
or interest rates, is their tendency to permanently relax, to-
wards a reference level �, a property known as mean rever-
sion. Another feature is the multiplicative market processing
of random news, whose strength becomes modulated by a
function of the stochastic variable itself. These two proper-
ties are modeled by means of a nonlinear mean-reverting

force and nonlinear multiplicative noise. They are discussed
in detail in Sec. II.

In Sec. III, we discuss the shapes of the PDFs that such
family of models yields. Despite being of a general form,
they give rise to PDFs that decay exponentially fast, either
above the mode, below it, or both, in disagreement with em-
pirical observations. For instance, log-normal behavior has
been reported for volatility computed from global data of the
US stock index S&P500 �4�, at intermediate values. How-
ever, at high values, a power-law behavior, with exponent
outside the stable Lévy range, was observed. The same
analysis performed for individual companies �4� also yields
power-law tails. But in that case, the results show a variation
slower than log-normal below the mode, suggesting a power-
law also in the limit of small values. The volatility of capi-
talized stocks traded in US equity markets exhibits similar
features �6�. Other variables with mean reversion, such as
volume of transactions �number of trades� present akin dis-
tributions. Power-law tails out of the Lévy range have been
reported for the PDFs of normalized NYSE stock volumes
�7�. More recently, studies of normalized volumes, per-
formed over high resolution data �1–3 min� of NYSE and
NASDAQ �8� �see also Ref. �9��, display PDFs with power-
law behavior both at large and small values. We will show
that the class of multiplicative processes considered in Sec.
III, although general enough, is not able to reproduce, for
any value of its parameters, these empirical PDFs in the
whole range.

In a realistic model, we must deal with various sources of
fluctuations acting upon the collective variable. Then, we
propose to include a component that is lacking to suitably
model many real processes, that is the presence of fluctua-
tions that act additively, besides the multiplicative noise al-
ready taken into account. The latter originates from the in-
ternal correlated behavior of the market, representing a sort
of endogenous feedback effect, while additive noise concerns
fluctuations of purely external origin or random speculative
trading. Then, in Sec. IV, we present a further generalization
that consists in incorporating an independent additive source
of noise. Depending on the parameters of the process, the
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additive or multiplicative contributions will play the domi-
nant role. This gives rise to a rich spectrum of PDF shapes,
in particular, a subclass with twofold power-law behavior,
both above and below the mode, providing a general realistic
framework for describing the shape of empirical distribu-
tions. A comparison with experimental results is presented in
Sec. V. Finally, Sec. VI contains the main conclusions and
general remarks.

II. MEAN REVERSION AND MULTIPLICATIVE
FLUCTUATIONS

The reversion to the mean is one of the basic ingredients
to describe the dynamics of several stochastic variables of
interest in economy. It is fundamental since it concerns the
behavior around a central value � and reflects the global
market response to deviations from a consensus or equilib-
rium level. It depends on monetary unit, market size, degree
of risk aversion, etc., hence it is characteristic of each mar-
ket. The aversion to deviations from the mean needs not be
linear, especially when large deviations are involved. Simi-
larly, a nonlinear mechanism due to the cooperative behavior
of traders rules the way the market modulates the amplitude
of fluctuations �mainly external� giving rise to innovations.

We consider the general class of stochastic differential
equations given by

dx = − ��x − ��xr−1 dt + �xs dw , �1�

where � ,� ,��0,r ,s�R, and w is a Wiener process, such
that �dw�=0 and ��dw�2�=2dt. The definition of the stochas-
tic process is completed by the Itô prescription. This class
generalizes well-known models employed to describe the dy-
namics of mean-reverting financial variables �10�. In particu-
lar, some traditional processes for modeling volatilities or,
mainly, squared volatilities are the Hull-White �r=1,s=1�
�11� and the Heston �r=1,s=1/2� �12� models, the latter
also known either as the Cox-Ingersoll-Ross �13� or Feller
process �14�. The arithmetic �r=1,s=0� and geometric �r
=2,s=1� Ornstein-Ulhenbeck processes are particular cases
too. Moreover, other models employed in the literature of
volatilities are related to this class �6,15�.

Different values of r in Eq. �1� represent different possible
relaxation mechanisms of amplitude �, determined, among
other factors, by constraints, flux of information, stock li-
quidity, and risk aversion, which are particular of a given
market. Notice that the restoring force in Eq. �1� corresponds
to a confining potential, with minimum at �, for all r�R.
The larger r, the more attractive the potential for large x, but
the less attractive for vanishing x. Similarly, different values
of s specify the market informational connectivity, which
conditions the degree of coherent multiplicative behavior.
Models in the literature typically set s�0, meaning that the
effective amplitude of fluctuations increases with x. Negative
s makes multiplicative fluctuations grow with decreasing x,
thus it mainly reflects a cooperative reaction to quiescence.
Although it does not seem to reflect a realistic steady state of
the market, it may occur as a transient, driven by speculative
trading.

The two mechanisms are complementary. If r�0 the re-
storing force decreases for increasing x above the reference
level, in particular, for r�−1, the force tends to zero in the
limit of large x. Thus decreasing r represents markets that
become less able to recover the reference level by means of
the deterministic tendency alone. However, a strong multi-
plicative response to large fluctuations �positive s� could still
compensate that inability and restore the market historical
level. Concerning the response to small values, the restoring
force diverges at the origin if r�1, while for r�1, it van-
ishes at x=0, meaning that this point becomes an unstable
equilibrium state. This corresponds to a market indifferent to
low levels of trading activity. Again, this effect can be bal-
anced by the multiplicative contribution �with a small value
of parameter s�.

In early works, only very particular values of �r ,s� have
been considered. However, this may be sometimes owed
more to reasons of mathematical solvability, than to econo-
physical ones. Following the above discussion, �r ,s� may be
nonuniversal, depending on the particular nature of a market
or its agents. Therefore we will not discard any possibility
a priori.

III. GENERALIZED MULTIPLICATIVE PROCESS
WITH MEAN REVERSION

We consider the simple class of stochastic multiplicative
differential equations given by Eq. �1�, that generalizes many
processes usually found in the literature of volatilities. We
investigate, in this section, the long-time PDFs that this class
of processes yields. The Fokker-Planck equation associated
to Eq. �1�, following standard methods �16�, is

�t� = ��x��x − ��xr−1�� + �2�xx
2 �x2s�� . �2�

Its long-term solution is relevant in connection to the as-
sumption that the process can be treated as quasistationary.
In that case the PDF obtained from an actual data series will
coincide with the stationary solution. Considering reflecting
boundary conditions at x=0 and x→� �16�, the steady state
solution of Eq. �2� reads

��x� =
�o

x2sexp�− ��� xp+1

p + 1
− �

xp

p
	
 , �3�

with p�r−2s�0,−1, where �o is a normalization constant
and ���� /�2 an effective restoring amplitude, such that �
�a parameter associated to order� becomes reduced by the
amplitude of multiplicative noise �associated to disorder�.

The class of processes described by Eq. �3� thus generi-
cally yields asymptotic exponential-like behaviors for small
or/and large values. As soon as p+1�0, a stretched expo-
nential decay is obtained for large enough x, such that the
argument of the exponential is proportional to −xp+1. If p
�0, a stretched exponential of the inverse argument
�−1/x�p�� is obtained for vanishing x. Therefore, for
p� �−1,0�, the PDF presents dominant exponential-like be-
havior both for low and large values, without any restriction
on the value of s. Outside that interval, the power law x−2s in
Eq. �3� asymptotically dominates, for either small �if p�0�
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or large �if p�−1� argument. Then, normalization in �0,��
restricts the possible values of s according to s�1/2 �if p
�0�, s�1/2 �if p�−1�.

In the marginal cases, Eq. �3� explicitly is
I: For p�r−2s=−1,

��x� =
�o

x2s+��
exp�− ���/x� , �4�

with 2s�1−�� for nomalizability.
II: For p�r−2s=0,

��x� = �ox���−2s exp�− ��x� , �5�

with 2s����+1 for normalization, but 2s���� to avoid
the divergence at the origin.

Figure 1 displays the possible PDF asymptotic shapes in
�s ,r� space. Notice that the s=0 axis gives the solution for
mean-reverting models with purely additive fluctuations. Let
us analyze some special cases. In the trivial case �s ,r�
= �0,1�, corresponding to the Ornstein-Ulhenbeck process
�16�

dx = − ��x − ��dt + � dz , �6�

the noisy contribution becomes additive and the stationary
PDF is Gaussian �truncated at x=0�.

Although we are dealing with ��0, it is worth mention-
ing the case �� ,s ,r�= �0,1 ,1�, corresponding to the geomet-
ric Brownian process, that leads to the log-normal distribu-
tion.

For type I �r=2s−1�, notice that the PDF decays as a
power law, for large x, and goes to zero faster than power
law, for vanishing x. The power-law exponent is controlled
by s and ��, that is, all the model parameters, except � are
involved. In the particular case r=s=1, one recovers the
Hull-White process �11�

dx = − ��x − ��dt + �x dz . �7�

In case II �r=2s�, observe that the PDF has opposite be-
havior: it increases at the origin as a power law and decays
exponentially for large x. All the model parameters including
� are buried in the power-law exponent. In particular if r
=2s=1, one gets the Heston model �12�,

dx = − ��x − ��dt + �x dz . �8�

If r=2s=2, the geometric Ornstein-Uhlenbeck process is ob-
tained,

dx = − ��x − ��x dt + �x dz . �9�

Diverse other models proposed in the literature can also
be thought as particular instances of our generalized model.
For example, the one proposed by Micciché et al. �6� is in
correspondence with the Hull-White model �7�, with x rep-
resenting volatility v, whereas in the latter x�v2. Also a
family of multiplicative models, studied before in the context
of a wide spectrum of physical processes �17�, belongs to the
class here considered, through the transformation x→x	.
Similar models, with polynomial drift and linear multiplica-
tive noise, have been proposed for returns �18�. Although
these models deal with financial variables taking both posi-
tive and negative values, our present discussion is consistent
with the solutions found there.

Summarizing, from Eqs. �3�–�5�, in general, the
asymptotic behaviors below and above the mode are tied,
such that, in a log-log scale, if one flattens the other changes
rapidly. This explains why models of this class fail to de-
scribe empirical volatilities in the whole range of observed
data, even under the transformation v2�v.

IV. GENERALIZED MODEL WITH
ADDITIVE-MULTIPLICATIVE STRUCTURE

We analyze in this section processes that take into account
the presence of some additional source of noise. Previous
works �19–21� show that additive-multiplicative stochastic
processes constitute an ubiquitous mechanism leading to fat-
tailed distributions and correlated sequences. This extra noise
represents a quite realistic feature, since, besides noise
modulated by the market, other fluctuations may act directly,
additively. From the stream of news, represented by a noisy
signal, some are amplified or reduced by cooperative actions,
others incorporated unaltered. Related ideas have been dis-
cussed in Ref. �22�. Also, a model of financial markets that
leads to additive-linear-multiplicative processes has been re-
cently proposed �23�, where the noises are identified with the
fluctuating environment and fluctuating interaction network,
respectively. In general, the two white noises are considered
uncorrelated. However, they may even correspond to identi-

FIG. 1. Diagram of the asymptotic behavior of the PDF given
by Eq. �3�, in the �s ,r� plane. Unshadowed regions and dotted bor-
ders identify regions excluded by the normalization condition. At
the positive r axis, the PDF is finite at the origin. Tilted lines denote
the marginal cases r=2s �p=0�, with pure exponential tail and
power-law growth at the origin, and r=2s−1 �p=−1�, with power-
law tail and exponential of 1 /x growth at the origin �the threshold
points of these lines have coordinates s= �1+���� /2 and �1
−��� /2, respectively�. Parameter a�0, in the exponential formu-
las, as well as the power-law exponents, depend on model param-
eters. Symbols correspond to the special processes: Hull-White
�HW�, Heston �H�, Ornstein-Ulhenbeck �OU�, and geometric OU
�GOU�.
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cal time series as soon as they are shifted with a time lag
greater than the correlation time. In such case, the endog-
enous noise is expected to act with a delay due to its very
nature of feedback process, whereas the additive noise is
incorporated immediately, free of signal processing.

By including purely exogenous fluctuations, in the pro-
cess defined by Eq. �1�, we obtain the following Itô-
Langevin equation �ILE�:

dx = − ��x − ��xr−1 dt + �xs dw + 
 dz , �10�

where w ,z are two independent standard Wiener processes,
defined as above, and � ,
 their respective amplitudes. The
corresponding Fokker-Planck equation reads

�t� = ��x��x − ��xr−1�� + �xx���2x2s + 
2��� . �11�

Its steady state solution with reflecting boundary conditions
is

��x� =
�o

1 + �2x2sexp�− �
�x yr−1�y − ��
1 + �2y2s dy
 , �12�

with �o a normalization constant, �
�� /
2 , �2��� /
�2

��
 /��. In most cases the integral can be written in terms
of hypergeometric functions 2F1 �24�, through

�x y	−1

1 + �2y2sdy �
	

x	 2F1�c,1,c + 1,− �2x2s� �13�

with c�	 / �2s��−1,−2,…, whereas, in the marginal case
	=0, we will use

�x y−1

1 + �2y2sdy � ln x − ln�1 + �2x2s�/�2s� . �14�

By means of these definitions and their asymptotic formulas
�24,25�, we obtain the possible PDF shapes, in �s ,r� space,
as schematized in Fig. 2. The marginal cases r=0 and r=
−1 will be considered latter. In general, sufficiently large
positive s is required in order to yield power-law tails, oth-
erwise, stretched exponential tails prevail, as for the pro-
cesses considered in Sec. III. The additive noise does not add
new domains with power-law tails, although regions with
stretched exponential law are excluded or included by the
normalization condition. For vanishing x, the main difference
with purely multiplicative processes is that, for positive both
s and r, the PDF is truncated at the origin. Notice that, as the
PDF is finite at the origin, then, if x is identified with the
squared volatility �x�v2�, the PDF for v increases linearly at
the origin.

Let us analyze, in more detail, the marginal cases r=0 and
r=−1 that can yield power laws in both asymptotic limits.
From Eqs. �12�–�14�, we obtain

�A� For r=0, the PDF has the form

��x� = �o
x�
���x�

�1 + �2x2s��
�/�2s�+1 , �15�

where �x��exp�−�
x2F1(1/ �2s� ,1 ,1 / �2s�+1,−�2x2s)� is
a smooth function of x, such that ��0� is finite, hence it does
not spoil the power-law growth at the origin. For large x, it

may present different asymptotic behaviors depending on the
value of s:

�A1� If s�0,��x� decays as pure exponential of x. There-
fore the asymptotic decay is finally dominated by this expo-
nential factor.

�A2� If 0�s�1/2 ,��x� behaves asymptotically as a
stretched exponential with argument x1−2s. That is, the tail,
although a power law for moderate x, becomes asymptoti-
cally dominated by a stretched exponential decay.

�A3� If s�1/2 ,��x� tends to a positive value, therefore
in this instance, the tail remains power law.

There, by switching s, one tunes the tail type, being a
power law for s�1/2. In the threshold case s=1/2, we have

2F1�1,1 ,2 ,−z�� ln�1+z� /z, then we get the explicit expres-
sion

�A�x� = �o
x�
�

�1 + �2x��
�+��+1 . �16�

Thus the case r=0, s�1/2 allows one to model empiri-
cal PDFs with twofold power-law behavior.

�B� In the case r=−1, the normalization condition re-
quires: s�1/2, or also, if �
�1, s�0 is allowed. The PDF
has the form

��x� = �o
x−�
��x�

�1 + �2x2s�−�
/�2s�+1 , �17�

where ��x��exp�−�
�2F1(−1/ �2s� ,1 ,−1/ �2s�+1,
−�2x2s) /x� tends to a finite value for large x, therefore the tail
is a power law. The asymptotic behavior of ��x� for small x
depends on s.

�B1� For s�1/2, it behaves as an exponential of −1/x,
that dominates the low x behavior of the PDF.

FIG. 2. Diagram of the asymptotic behavior of the PDF defined
by Eq. �12�, in the �s ,r� plane. Unshadowed regions and dotted
borders are regions excluded by the normalization requirement. At
both positive semiaxes, the growth at the origin is power law. On
dark gray lines, tails are power law, with the tilted line correspond-
ing to r=2s−1 �p=−1�. Dashed lines correspond to pure exponen-
tial tails, with the tilted line corresponding to r=2s �p=0�. In the
formulas, a�0, as well as the power-law exponents, generically
depend on model parameters, moreover p�r−2s. Symbols corre-
spond to the special processes �A� �Eq. �16�� and �B� �Eq. �18��.
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�B2� For −1/2�s�0,��x� behaves as an exponential of
−1/x1+2s that dominates the asymptotic behavior.

�B3� However, ��x� takes asymptotically a finite value, if
s�−1/2; hence the complete expression increases at the ori-
gin as a power law.

At the threshold value s=−1/2, by employing again the
explicit expression for 2F1�1,1 ,2 ,−z�, one obtains

�B�x� = �o
x���+1

�1 + x/�2��
+���+1 , if �
 � 1. �18�

Thus the case r=−1, s�−1/2 also provides twofold power-
law distributions.

In general, the class of asymptotic behavior is ruled by
�s ,r� that determine the form of market laws. This holds, of
course, as soon as the remaining parameters assume moder-
ate values. For instance, the factor �2��
 /�� accompanies
x2s in the formula for ��x� �Eqs. �12�–�14��, then extreme
values of � will change the asymptotic regime. In fact, in the
limit 
=0 �negligible additive noise, corresponding to �
→��, different laws arise, as we have seen in the preceding
section.

Summarizing, we have shown the whole picture of
asymptotic behaviors that a general class of additive-
multiplicative processes produce. As a consequence of the
extra additive noise, other types of asymptotic behaviors
emerge. Specially interesting solutions arise in the marginal
cases r=0,−1 where twofold power-law PDFs are found.

Moreover, additive-multiplicative processes lead to higher
richness of crossover behaviors, with respect to purely mul-
tiplicative processes. Therefore the appearance of new PDF
shapes exceeds the one resulting from the mere analysis of
the asymptotic regimes. This is especially important because
depending on the values of the parameters, the true
asymptotic regime might fall outside the observable range.

V. COMPARISON WITH EMPIRICAL DISTRIBUTIONS

Let us consider, as a paradigm of the PDFs with twofold
power-law behavior, Eqs. �16� and �18�, that have a simple
exact expression. Actually they have the same functional
form, via redefinition of parameters �� ,�
 ,���. This expres-
sion has been recently proposed in the literature as an ansatz
for fitting the distribution of high-frequency stock volumes
�8�, under the form

��x� = �o
�x/xo��

�1 + �q − 1�x/xo�1/�q−1� , �19�

where, in that specific application, x is identified with nor-
malized stock volume. Therefore identification of the process
for real volumes with one of the models above may allow an
econophysical interpretation of the fitting parameters. Table I
presents the correspondence between the parameters of Eq.
�19� and those of processes �A� and �B�, given by Eqs. �16�
and �18�, respectively.

Recall that �
�� /
2 and ���� /�2 ��2��
 /���, thus
the power-law exponent for small values of x, given by �
�see Table I�, increases with � and �, and is reduced by either
one of the two noise amplitudes: the additive noise in pro-

cess �A� and the multiplicative one in process �B�. The
power-law decay �with exponent 1 / �q−1�−�� for large val-
ues of x is ruled by either one of the effective coefficients ��

�in �A�� or �
 �in �B�� �see Table I�. That is, the tail is fatter,
the larger the corresponding noise amplitude. While in pro-
cess �A� the multiplicative noise affects the tail, in model �B�
it is affected by the additive noise, oppositely to what hap-
pens for small values. This is related to the sign of s, indi-
cating higher multiplicative feedback for either increasing
�A� or decreasing �B� values of x.

Besides the good agreement already observed for volumes
�8,9�, we tested this functional form to daily data of volatili-
ties reported in the literature �6�. The results are shown in
Fig. 3. In the models we are generalizing, the variable x is
usually identified with the variance or squared volatility �x
=v2�. Then, the resulting PDF for v is

P�v� = �o
�v/vo�2�+1

�1 + �q − 1��v/vo�2�1/�q−1� , �20�

with �o=2�2−q���q−1���1/ �q−1�−1� / �vo���+1���1/ �q
−1�−�−1��.

Figure 3 shows an excellent agreement between theoreti-
cal and empirical PDFs, for the full range of data. Notice that
the very central part of the distribution is parabolic in the
log-log plot, then a poor statistics at the tails may mislead
one to think that the distribution is log-normal.

TABLE I. Correspondence amongst model parameters.

�A� �B�
Eq. �19� Eq. �16� Eq. �18�

1/ �q−1� 1+�
�+�� 1+�
+���

� �
� 1+���

xo �q−1��� /�
 �q−1��
 /��

FIG. 3. PDF of normalized volatility of stocks traded in US
equity market �data from Ref. �6��. The full line corresponds to a
fitting by the theoretical PDF given by expression �20�. Fitting pa-
rameters are �q ,� ,vo

2���1.178,2.20,0.097�. Insets: linear-linear
and log-log representation of the same data.
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Underlying dynamics

The satisfactory agreement between the empirical data
and Eq. �20� suggests that processes similar to either �A� or
�B� may rule squared-volatility evolution. Hence let us look
at the explicit form of the ILEs associated to processes �A�
and �B�:

�A� dx = − ��x − ��
1

x
dt + �x dz + 
 dw , �21�

�B� dx = − ��x − ��
1

x2dt + �
1
x

dz + 
 dw . �22�

The first term in each ILE represents the deterministic restor-
ing force with respect to the level �. It derives from a con-
fining potential of the form ��x−� ln x� �A� or ��ln x+� /x�
�B�. In both cases, the potential has a minimum located at
x=� and is divergent at x=0.

Average values are

�x��A� =
� + 1/�


1 − 1/��

and �x��B� =
� + 2/��

1 − 2/�


; �23�

both averages are greater than � and coincide only in the
limit of relatively small noise amplitudes ���
2 ,�2�. Mo-
ments �xn� are finite only if ���n �A� or �
�n+1 �B�. In
particular, the second moment is

�x2��A� =
�
�� + 1/�
��� + 2/�
�
���1 − 1/����1 − 2/���

, �24�

�x2��B� =
���� + 2/����� + 3/���
�
�1 − 2/�
��1 − 3/�
�

. �25�

In model �A�, increasing�decreasing� amplitude of the addi-
tive�multiplicative� noise, increases the width of the distribu-
tion, whereas model �B� presents opposite behavior. Thus,
for instance, the additive noise has a confining effect in pro-
cess �A�, opposite to the effect observed in processes with
null � �19�.

On the other hand, the distribution has a maximum at

x�A�
max =

�

1 + 1/��

and x�B�
max = � +

1

��

. �26�

Notice that the additive noise does not affect the mode, as
expected. The most probable value of distribution �A� shifts
to the right with increasing multiplicative amplitude, while in
distribution �B� the opposite tendency occurs. From Eqs.
�23� and �26�, x�A�

max���A�� �x��A�, while ��B��x�B�
max� �x��B�.

That is, in model �A�, the reference value � represents a
typical value comprised between two central measures,
which does not hold in model �B�. This observation, in ad-
dition to the positivity of s, point to model �A� as a more
realistic long-term process.

The fitting parameters in Fig. 3 lead to �� ,�� ,�
��A�
��0.50,2.4,4.4� or �� ,�� ,�
��B���0.19,6.3,3.4�. In both
cases, �� ,�
�1, as expected for regulated markets. While

�v�=1, because empirical volatility is normalized, �x�= �v2�
�1.3 and the mode is xmax�0.35, consistently with Eqs.
�23�–�26�.

Numerical integration of ILEs �21� and �22�, by standard
methods �16�, shows that both processes produce time series
with bursting or clustering effects, as observed in real se-
quences. However, process �B� may present, for some values
of the parameters, a kind of ergodicity breaking, with large
jumps to a state basically governed by additive noise. This
occurs because, once x jumps to a high value, both the re-
storing force and the effective amplitude of multiplicative
noise become small as to pull x back to its reference level.
Then, relaxation is slowed down and the regime of high
volatility persists for long time stretches. Although a process
with s�0 is not expected to be a realistic model for very
long time intervals, it can model, for instance, the transient
behavior of the market around crashes. In fact, process �B�
yields akin crises. After the crash occurs, this drastic event
might switch the system back to a s�0 regime. An analysis
of real time series to estimate drift and diffusion coefficients
�26� would help to identify the particular underlying process,
but this is out of the scope of the present work.

VI. FINAL REMARKS

We have analyzed stochastic models of a quite general
form, with algebraic restoring force and algebraic multipli-
cative noise. A further generalization with the inclusion of an
extra source of noise, of standard Wiener type, has also been
analyzed. These additive-multiplicative processes are built
on the basis of realistic features: The multiplicative noise
describes innovations generated by endogenous mechanisms
that amplify or attenuate a random signal, depending on the
internal state of the system. Whereas the additive noise en-
codes a direct influence of external random fields such as
news or spontaneous fluctuations due to speculative trading.
One of the goals of this work was to study systematically the
PDF asymptotic solutions of these generalized models. We
have shown that the inclusion of additive noise gives rise to
interesting PDF shapes, with a richer spectrum of crossover
behaviors and, in particular, twofold power-law decays. The
shapes of the PDFs are governed by the effective market
rules parametrized by r and s. These parameters describe the
algebraic nature of the global mean-reverting strength of the
market and the informational coupling among the traders,
respectively. On the other hand, power-law exponents and
coefficients of exponential-like functions depend also on the
reduced parameters �� , �
, and on �. This means that one
may expect universal behavior among markets that share
similar rules �same r and s� and same rescaled restoring pa-
rameters, for a properly normalized reference level �. Sum-
marizing, the additive-multiplicative processes given by Eq.
�10� provide a general realistic framework to describe the
shape of empirical distributions for financial, as well as for
physical systems. An illustrative application to empirical
volatility data was presented in Sec. V, showing excellent
results.

The statistical description of a market should include its
dynamical properties such as the temporal decay of correla-
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tions. In real time series of volatilities �4� and volumes �7�,
power-law decaying correlations have been observed. It is
worth noting that stochastic processes with additive-
multiplicative structure �without mean reversion� are being
currently studied in connection with a generalization of stan-
dard �Boltzmann-Gibbs� statistical mechanics, recently pro-
posed by Tsallis �27�. The PDFs associated to this formalism
generalize the exponential weights, namely, expq�−x���1
− �1−q�x�1/�1−q� �entering as a factor in Eq. �19��. The time
series arising from additive-multiplicative processes without
mean reversion present strong correlations that prevent con-
vergence to either Gauss or Lévy limits �21� and lead to
q-Gaussian distributions. This suggests that similar correla-
tions may persist in mean-reverting processes with the
additive-multiplicative character. Moreover, it has been
shown �28� for a particular class of additive-multiplicative
processes that tunning model parameters may introduce vola-

tility clustering for the dynamics of prices, also enhancing
other realistic features detected through multifractal analysis.
These observations in favor of additive-multiplicative pro-
cesses, together with the fact that Eq. �10� leads to PDFs in
such a good agreement with empirical ones, makes it worth-
while to perform a detailed study and comparison of real and
artificial time series to test the models with respect to their
dynamics. Elucidating this point deserves a careful separate
treatment.
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